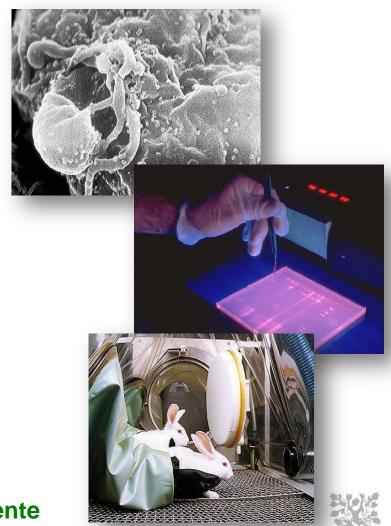


Programa de mantenimiento, cualificación y validación de instalaciones y equipos relacionados con protección colectiva

Fernando Usera Mena, Servicio de Bioseguridad. Centro Nacional de Biotecnología

MAPA DE RIESGOS EN LOS LABORATORIOS

AGENTES FÍSICOS:


- √ Radiaciones ionizantes
- √ Radiaciones no ionizantes
- ✓ Ultrasonidos
- ✓ Electricidad
- √ Fuentes de calor

AGENTES QUÍMICOS

- ✓ Compuestos químicos
- √ Gases a presión y liquados

AGENTES BIOLÓGICOS

- √ Muestras biológicas
- √ Agentes patógenos
- ✓ Organismos modificados genéticamente

INSTALACIONES DE LABORATORIOS SEGURAS FACTORES A VALORAR

- ✓ Entorno
- ✓ Perímetro
- ✓ Distribución conceptual
- ✓ Obra civil: materiales de obra, revestimientos
- ✓ Redes de servicio e instalaciones de apoyo
- ✓ Sistemas de seguridad física
- ✓ Sistemas de protección colectiva

Evaluación del riesgo

Medidas de protección necesarias

Reducción del riesgo

OBJETIVOS DEL MANTENIMIENTO

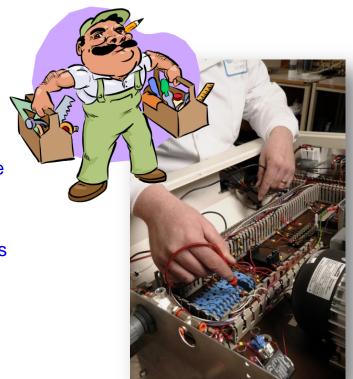
- √ Garantizar el óptimo funcionamiento de la instrumentación e instalaciones.
- ✓ Maximizar la vida útil de las instalaciones e instrumentación
- Reducir los costes de mantenimiento
- ✓ Optimizar los recursos humanos

TIPOS DE MANTENIMIENTO

✓ Mantenimiento de usuario

Responsabilidades de los usuarios en el uso de instrumentación e instalaciones

✓ Mantenimiento correctivo


Debe reducirse al máximo. Producción de situaciones indeseables con reducción de la seguridad y de la productividad

✓ Mantenimiento preventivo

Programa de revisiones que surge de la necesidad de reducir el mantenimiento correctivo. Aumenta la seguridad

√ Mantenimiento predictivo

Predicción de fallos y averías mediante la monitorización de parámetros utilizados como indicadores

VALIDACIÓN

Procedimiento documentado destinado a obtener, registrar e interpretar los datos necesarios para demostrar que un proceso cumple las especificaciones predeterminadas

Cualificación del diseño

Comprobación de que el diseño del la instalación e instrumentación cumplen las especificaciones de usuario y las normas legales

Cualificación de la instalación:

Comprobación de que la instalación de estos medios se realiza conforme a las especificaciones del fabricante

Cualificación de la operación:

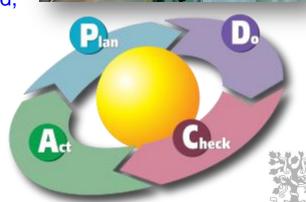
Comprobación de que estos medios cumplen en su operación las especificaciones del fabricante

Validación del proceso:

Comprobación de que los procesos que se realizan no vulneran la correcta operación de los medios indicados, obteniéndose el producto final deseado

OBJETIVOS Y ASPECTOS DEL PROGRAMA DE MANTENIMIENTO, CUALIFICACIÓN Y VALIDACIÓN

- ✓ Mantenimiento preventivo
- ✓ Mantenimiento predictivo
- ✓ Cualificación del diseño
- ✓ Cualificación de la instalación
- ✓ Cualificación de la operación
- √ Validación del proceso


REQUISITOS Y CARACTERÍSTICAS DE LAS OPERACIONES DE MANTENIMIENTO, CUALIFICACIÓN Y VALIDACIÓN

✓ Actuaciones coordinadas en las que colaboran los servicios de mantenimiento, seguridad biológica, instrumentación, etc.

✓ Las operaciones que requieran gran especialización y medios que supongan un coste elevado se realizan por empresas externas

✓ Estas operaciones se completan con **procedimientos internos** llevados a cabo por los servicios de bioseguridad, mantenimiento, instrumentación y lavado y esterilización

✓ Control de calidad (planificar-hacer-verificar-actuar)

METODOLOGÍA EN LAS PRUEBAS REALIZADAS POR EMPRESAS EXTERNAS

- ✓ **Adjudicación** del servicio conforme a normativa de contratación pública
- √ Visado de los protocolos por el servicio de mantenimiento, seguridad biológica, instrumentación, etc.
- ✓ Realización de las operaciones conforme a un calendario acordado
- ✓ Entrega de los **informes** incluyendo las desviaciones detectadas
- ✓ Realización de las correcciones, recualificación o revalidación

Nueva instrumentación: el procedimiento es similar y se lleva a cabo con el suministrador incluyendo la cualificación de la instalación

DOCUMENTACIÓN ASOCIADA A LOS PROCESOS DE CUALIFICACIÓN Y VALIDACIÓN

Protocolo de validación

- •Plan escrito que define como se lleva a cabo el procedimiento
- •Incluye:
 - Objetivo
 - Descripción del procedimiento a seguir
 - Parámetros a medir. Equipos a utilizar
 - Análisis de los resultados
 - Criterios de aceptación

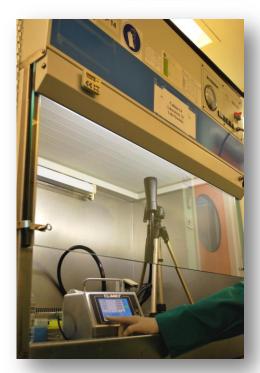
Informe de validación

- •Recopilación de los resultados Evidencia documental
- •Incluye:
 - Referencia a protocolo
 - Lista de incidencias/desviaciones
 - Resultados obtenidos y nivel de cumplimiento
 - Aceptación o no del procedimiento
 - Copia de datos primarios
 - Persona implicadas
- Revisión previa del protocolo y posterior del informe y aprobación por personas implicadas
- Siempre que sea posible conforme a normas técnicas reconocidas (UNE, EN, ISO)

CENTRO NACIONAL DE BIOTECNOLOGIA

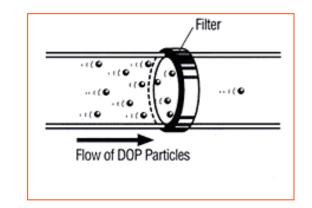
METODOLOGÍA EN LAS PRUEBAS INTERNAS

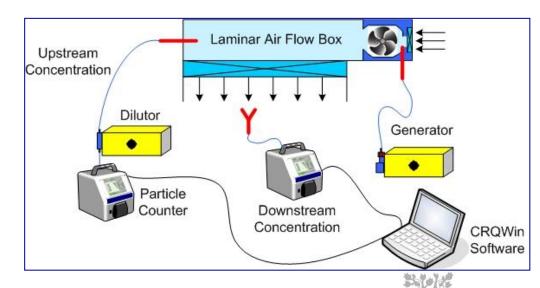
- ✓ Redacción de los protocolos por los servicios de bioseguridad, mantenimiento e instrumentación, etc. Coordinación del proceso
- ✓ Realización de las **pruebas según periodicidades establecidas** conforme a la peligrosidad asociada y la probabilidad de desviación
- ✓ Registro de los resultados incluyendo las desviaciones detectadas y las operaciones de corrección
- ✓ Realización de las correcciones, recualificación o revalidación. Procedimiento coordinado por mantenimiento, bioseguridad, etc.
- Los formatos y documentación que se utilicen, así como el procedimiento de archivo deben cumplir **norma de calidad**
- √Se ha de involucrar a los usuarios en determinadas operaciones


REC	SISTRO DE VALIDA	CIÓN BIOLÓGICA D	E PLANTA "	LANTA "BIOWASTE"			Centro Nacional de Biotecnolo	
	oorganismo testigo: lus stearothermophillus	Tipo de control:		Concentració		lº de ote:	Fecha caducidad:	
Operador:				Fecha de validacion:		e ación:	Firma:	
RES	ULTADOS		С	NC				
	Parte superior interna					Ь)	
	Parte central interna					Ь		
	Parte inferior interna					Ь	J	
	Prueba control ERVACIONES E INCIDEI	NCIAS:						
DBS		NCIAS:		Concentación	c N	₽ de lote:	Fecha caducidad	
OBS Naci	DERVACIONES E INCIDEI				.	I ⁿ de lote: e validación:	Fecha caducidad	
Micro Macil Oper	DERVACIONES E INCIDEI			Concentación	.		[
Micro facili oper	ERVACIONES E INCIDEI porganismo testigo: lus stearothermophilius ador:		Fecha	Concentación de validacion	.		[
Micro Macil Oper	ERVACIONES E INCIDEI corganium testigo lus stearothermophillus ul. TADOS		Fecha	Concentación de validacion	.		[
Micro	corganismo lestigo: los discretormophillus uLTADOS Parte superior interna		Fecha C	Concentación de validacion	.		[
Micro Bacil Oper	cervaciones e incidei corganismo testigo us stoarothermophilius ador: ULTADOS Parte superior interna Parte central interna		Feche C	Concentación de validacion	.		[

CUALIFICACIÓN Y VALIDACIÓN REALIZADAS POR EMPRESAS EXTERNAS

- Extracción y filtración de aire:
 - ✓ Racks ventilados
 - ✓ Armarios de aislamiento
 - ✓ Aisladores
 - ✓ Cámaras de cultivo in vitro, cámaras climáticas y fitotrones
 - √ Aspiradores con filtros absolutos
 - ✓ Cabinas flujo horizontal, vertical y seguridad biológica
 - √ Vitrinas de extracción de gases
 - √ Campanas extractoras
 - √ Cajones de filtración para filtros absolutos
- Sistema de tratamiento de aire en laboratorios especiales
- Autoclaves
- SAS biológicos
- •Plantas "biowaste"





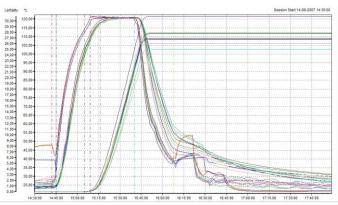
CUALIFACIÓN DE LA INTEGRIDAD DE FILTROS HEPA

- ✓ Utilización de un aerosol de valvulina con diámetro medio de partícula de 0,3 µm
- ✓ Dispersión del aerosol antes del filtro HEPA
- ✓ Medición de partículas antes y después del filtro
- ✓ Lectura antes de filtro: 100%
- ✓ Lectura después del filtro: ≤0,01%
- ✓ Rastreo con fotómetro lineal de la superficie del filtro

VALIDACIÓN DE AUTOCLAVES DE VAPOR

Test de fugas en vacío:

Tiempo de 10 min. La cámara debe alcanzar 70 mbar. Desviación máxima de 1,3 mbar/min.


En algunos autoclaves lo puede realizar el propio usuario

Test de distribución de temperaturas para sólidos:

Realización por triplicado, carga estándar, parámetros definidos por el usuario, monitorización de la temperatura mediante 12 -24 termopares, desviación máxima de \pm 0,5°C, cálculo de presión y F_0

Test de distribución de temperaturas para líquidos:

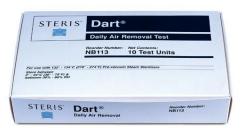
Prueba idéntica a la anterior pero con una carga estándar de líquidos

Sterilization of LVP in plastic bags at 121,11 °C

PRUEBAS INTERNAS DE VALIDACIÓN

Microorganismos testigo y controles químicos Anemómetros de ventolina Tubos de humo Placas rodac

- √ Vitrinas de extracción de gases para químicos
- ✓ Autoclaves
- √SAS biológicos
- √ Planta de tratamiento de efluentes líquidos
- ✓ Métodos manuales de limpieza de superficies



TEST BOWIE & DICK

- ✓ Prueba normalizada para autoclaves de vapor
- ✓ Analiza la distribución y penetración de la temperatura para cargas de textiles
- ✓ kit constituido por una lámina que contiene un laberinto impreso con una sustancia que vira de color cuando se ve sometida a 121°C
- ✓ La lámina se introduce en la cámara, cubierta por hojas de papel que simulan el material textil
- ✓ Prueba satisfactoria si todo el laberinto vira al azul.
- ✓ Condiciones: tres prevacíos, Tª de esterilización 121ºC durante
- 8,3 min y tiempo de secado 1 min
- ✓ La periodicidad de este método suele ser mensual.

VALIDACIONES CON MICROORGANISMOS TESTIGO

- ✓ Microorganismos: esporas de *Bacillus subtilis* y *Geobacillus stearothermophilus*
- ✓ Concentración por portador de esporas: 10⁶ esporas
- Colocación: en los lugares más desfavorables a la llegada del agente esterilizante
- ✓ Incubación en medio de cultivo con virador de pH

APLICACIONES

Tiras de esporas

- ✓ Microdifusión de germicidas en locales y esclusas
- ✓ Difusión de germicidas en fase gaseosa
- ✓ Autoclaves de óxido de etileno y peróxido de hidrógeno

Ampollas de esporas

- ✓ Hornos
- ✓ Autoclaves de vapor
- ✓ Plantas "Biowaste"

Tubos abiertos con ampolla de medio y disco de esporas

- ✓ Autoclaves de óxido de etileno y peróxido de hidrógeno
- ✓ Autoclaves de vapor

EFICACIA DE LOS RESULTADOS

- ✓ Detección de filtros HEPA en mal estado o mal instalados.
- ✓ Detección de la localización inadecuada de cabinas de bioseguridad
- ✓ Detección del desajuste de vitrinas de extracción de gases
- ✓ Comprobación de la disfunción de las vitrinas debido a la acumulación de materiales.
- ✓ Autoclaves: adecuación del ciclo de esterilización a la tipología de la carga a esterilizar.
- ✓ Mayor percepción de la importancia de los medios de protección y contención.
- ✓ Mejor seguimiento de las normas de utilización de dichos medios
- ✓ Aumento de la seguridad general
- ✓ Reducción del número de averías
- ✓ Beneficios económicos directos relacionados con el mantenimiento de instalaciones
- √ Beneficios económicos indirectos relacionados los resultados del trabajo

Muchas, Gracias

